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Mechanisms and clinical correlates of sperm DNA
damage

Lara Tamburrino, Sara Marchiani, Margarita Montoya, Francesco Elia Marino, Ilaria Natali, Marta Cambi,
Gianni Forti, Elisabetta Baldi and Monica Muratori

Among the different DNA anomalies that can be present in the male gamete, DNA fragmentation is the most frequent, particularly in

infertile subjects. There is now consistent evidence that a sperm containing fragmented DNA can be alive, motile, morphologically

normal and able to fertilize an oocyte. There is also evidence that the oocyte is able to repair DNA damage; however, the extent of this

repair depends on the type of DNA damage present in the sperm, as well as on the quality of the oocyte. Thus, it is important to

understand the possible consequences of sperm DNA fragmentation (SDF) for embryo development, implantation, pregnancy outcome

and the health of progeny conceived, both naturally and by assisted reproductive technology (ART). At present, data on the

consequences of SDF for reproduction are scarce and, in many ways, inconsistent. The differences in study conclusions might result

from the different methods used to detect SDF, the study design and the inclusion criteria. Consequently, it is difficult to decide

whether SDF testing should be carried out in fertility assessment and ART. It is clear that there is an urgent need for the standardisation

of the methods and for additional clinical studies on the impact of SDF on ART outcomes.
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INTRODUCTION

At fertilisation, the spermatozoon delivers the paternal genome to the

oocyte for embryo formation. Any type of damage present in the DNA

of paternal and/or maternal origin can lead to an interruption of the

reproductive process. The types of DNA disorder found in the male

gamete include chromosomal aberrations (mostly deletions and aneu-

ploidies), epigenetic modifications on histone tails and DNA, muta-

tions, base oxidation and sperm DNA fragmentation (SDF). SDF, in

particular, might be the most frequent cause of paternal DNA anomaly

transmission to progeny, as it is found in a high percentage of sper-

matozoa in subfertile and infertile men, as well as in heavy smokers,

aged men, subjects exposed to toxicants or to radiochemotherapies.

The percentage of DNA-fragmented spermatozoa in an ejaculate nega-

tively correlates with semen quality.1–3 However, such correlations are

not as strict as expected, indicating that SDF may be an independent

predictor of sperm fertility potential. Our group recently demon-

strated the existence of two sperm populations characterized by dif-

ferent degrees of SDF: one of these populations (named propidium

iodide dimmer (PIdim) for its staining with a PI nuclear probe, see

below) comprises only DNA-fragmented sperm and is strictly corre-

lated with poor semen quality. By contrast, the other population

(named propidium iodide brighter (PIbr), see below) comprises sperm

with variable percentages of DNA fragmentation which are completely

unrelated to semen quality.4 Sperm in the PIbr population can retain

an apparently normal morphology and motility, thereby increasing

their chances of being selected for intracytoplasmic sperm injection

(ICSI) purposes. This finding represents a significant problem, as it is

now clear that a spermatozoon with fragmented DNA can fertilize an

oocyte.5 There are several studies demonstrating that the oocyte and

the embryo retain the ability to repair DNA damage that may be

present in the paternal genome (reviewed in Ref. 6); however, whether

all types of damage can be repaired is not yet clear. For instance,

double-stranded DNA breaks appear to be less repairable than sin-

gle-stranded breaks and, thus, have a greater impact on embryo

development.7 In addition, the oocyte quality is another important

determinant, because oocyte immaturity, maternal age and external

factors may affect the ability to repair DNA damage.

The type and severity of SDF are determined by the underlying

mechanisms of SDF induction. In the following sections, we will

review the possible mechanisms producing DNA fragmentation and

the damage type, as well as the clinical studies that have focused on the

consequences of this damage for natural and assisted reproduction. In

addition, the methods currently available to detect SDF will be crit-

ically reviewed. The differences among the methods will be addressed

and their strengths and pitfalls discussed.

MECHANISMS GENERATING DNA FRAGMENTATION

SDF may originate in the testis, or it may occur as a consequence of

different insults after spermiation and during transit in the male gen-

ital tract. Of importance, for assisted reproductive technology (ART),
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SDF occurs after ejaculation, when sperm are deprived of seminal

plasma and incubated in vitro for a short time.8

DNA fragmentation of differentiating germ cells could occur in the

testis as part of the apoptotic process (which is known as the abortive

apoptosis theory) or during chromatin compaction, and in particular,

replacement of histones by protamines (the defective maturation the-

ory). Following release from the testis, oxidative stress is thought to be

the main mechanism responsible for the occurrence of DNA frag-

mentation and DNA base oxidation.

The abortive apoptosis theory

The abortive apoptosis theory was originally developed by Sakkas

et al.9 According to this theory, DNA fragmentation is induced by

activated endonucleases, which mostly lead to DNA double-stranded

breaks. The theory is based on studies demonstrating high expression

of Fas receptors (also known as CD95),10 as well as the presence of

ultrastructural apoptosis-like features such as cytoplasmic vacuoles,11

in ejaculated sperm. This evidence led Sakkas et al.9 to hypothesize that

sperm with fragmented DNA in the ejaculate might be derived from

germinal cells whose apoptotic process in the testis has not been com-

pleted. The recent identification in semen of membrane-bound, anu-

cleated, round structures termed M450 bodies (termed as such

because of their staining with merocyanine 540), which probably rep-

resent apoptotic bodies,12,13 is indirect evidence supporting the abort-

ive apoptosis theory. In particular, M450 bodies represent impairment

of the physiological phagocytosis process in the male genital tract. The

finding that M540 bodies are particularly abundant in the semen of

subfertile subjects13 and are highly correlated with the percentage

of PIdim DNA-fragmented sperm in the ejaculate (Muratori et al.,

unpublished data, 2011) further supports the abortive apoptotic

theory as one of the mechanisms causing SDF.

Although data supporting the abortive apoptosis theory have accu-

mulated, the relationship between SDF and the expression of apopto-

tic markers is still not as strict as expected,14 and there is no association

between apoptosis-like ultrastructures and the percentage of sperm

with DNA fragmentation.3 Accordingly, this mechanism cannot com-

pletely explain the occurrence of DNA fragmentation in spermatozoa.

Defective maturation theory

According to the defective maturation theory, DNA breaks that occur

during the replacement of histones by protamines, as part of the pro-

cess that leads to DNA compaction, fail to undergo complete religa-

tion.15–17 DNA break generation is important to reduce the torsional

stress in a DNA helix, thereby facilitating histone disassembly. The

enzyme responsible for creating DNA nicks is likely to be topoisome-

rase II, which is able to induce both single- and double-stranded

breaks.16,18 Topoisomerase II is also the main enzyme of the DNA

repair system for elongating spermatids.18 Recently, it has been shown

that topoisomerase II is inhibited by poly(ADP-ribose) polymerase

enzymes, which are activated as a consequence of DNA strand break

formation.19 It is likely that any alteration occurring in the complex

DNA repair process can have dramatic consequences for the genomic

integrity of the gamete.

Oxidative stress

Emerging evidence indicates that the abortive apoptosis and defective

chromatin packaging mechanisms cannot completely explain the

occurrence of SDF in the ejaculate. There are reports demonstrating

that there is more DNA fragmentation in sperm in the caudal epididy-

mis and the ejaculate than in the testicular sperm.20,21 Although the

number of patients included in these studies and the number of tes-

ticular sperm analysed were relatively small, these results seem to

indicate that SDF mainly occurs after sperm release from the testis.

Following spermiation, the generation of reactive oxygen species

(ROS) is considered the main cause of SDF. Excessive intrinsic ROS

production may result from the presence of immature spermatozoa

retaining cytoplasmic droplets.22 Genitourinary infections may serve

as another potential source of ROS. There is also evidence that after

ejaculation, SDF may increase spontaneously during laboratory hand-

ling and storage8 and following external insults.23,24

The positive relationship between intrinsic ROS production and

DNA fragmentation in semen samples,25 and the prevention of

DNA damage following treatment with ROS scavengers and antiox-

idants26,27 (discussed below) serve as indirect evidence that oxidative

stress can cause SDF. There is also a high correlation found between

SDF and the level of 8-hydroxy-2’-deoxyguanosine (8-OHdG), the

main marker of oxidative stress in DNA, in the analysis of sperm

selected by density–gradient centrifugation.28 To a much lesser extent,

the relationship between SDF and 8-OHdG has also been demon-

strated in unselected sperm.28,29 It should be mentioned, however,

that other studies do not show a clear relationship between SDF and

8-OHdG30,31 or between SDF and other signs of sperm oxidative

stress, such as malonaldehyde formation,32 suggesting that further

studies are warranted to define the relationship between oxidative

damage and SDF.

METHODS TO DETECT SDF

Several methods are currently available to evaluate SDF (Figure 1),

namely, the sperm chromatin structure assay (SCSA), terminal

deoxynucleotidyl transferase-mediated fluorescein-dUTP nick-end

labelling (TUNEL), in situ nick translation, the single-cell gel electro-

phoresis assay (also known as COMET), the acridine orange test and

the sperm chromatin dispersion test (also known as Halosperm).

Importantly, SDF can be revealed by flow cytometry and/or fluor-

escence microscopy (Figure 1) depending on the method used.

However, whereas flow cytometry may be used to objectively analyse

Figure 1 Assays used to evaluate sperm DNA fragmentation and measurement

technologies that can be used. AOT, acridine orange test; COMET, single-cell gel

electrophoresis assay; FC, flow cytometry; FM, fluorescence microscopy; ISNT,

in situ nick translation; SCD, sperm chromatin dispersion test; SCSA, sperm

chromatin structure assay; TUNEL, terminal deoxynucleotidyl transferase-

mediated fluorescein-dUTP nick-end labelling.
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hundreds of thousands of cells, fluorescence microscopy relies on a

subjective analysis that is usually limited to several hundred cells.

Recently, other differences between flow cytometry and fluorescence

microscopy have been highlighted.33 In the case of severe oligozoos-

permia (fewer than two million sperm/ejaculate), only fluorescence

microscopy can be used.

The important questions about these methods are whether they

reveal the same type of damage, whether they obtain comparable

results, and, last but not least, whether they are standardized. At the

moment, standardisation is defined only for the SCSA method.34 Lack

of standardisation is particularly important, as we have recently out-

lined for the TUNEL assay.35,36 The different data in the literature for

the levels of SDF in fertile and subfertile men, and the lack of agree-

ment among the different studies evaluating the impact of SDF on

ART outcomes, reflect how different methods may affect the results

(see below). For example, a systemic meta-analysis of papers reporting

the relationship between sperm DNA damage and ART outcomes

published by Li et al.37 shows how, when data are pooled according

to the method (TUNEL and SCSA) employed in the study, completely

different conclusions can be drawn. The two most heavily employed

techniques to reveal SDF are TUNEL and SCSA. Although the two

techniques show correlated results,34 they are not equivalent and

reveal different types of damage;37,38 consequently, the results from

studies detecting SDF with these methods are not comparable. In

particular, the TUNEL assay quantifies the amount of cellular DNA

breakage by incorporating fluorescent dNTPs at single- and double-

stranded DNA ends in the presence of the enzyme terminal deoxynu-

cleotidyl transferase. The SCSA method determines the extent of cel-

lular DNA denaturation (induced by acids or heat treatment) by

measuring the metachromatic shift of acridine orange from green

(indicative of intercalation into double-stranded DNA) to red fluor-

escence (indicative of association with single-stranded DNA). Even if

the induced denaturation is facilitated at the sites of DNA breaks, the

target sites for the two methods do not overlap exactly.34

Another method frequently used in clinical investigations is

COMET (a single-cell gel electrophoresis assay), which is a relatively

simple method for detecting DNA damage in individual cells.39 This

method consists of several steps: cells are embedded in agarose; lysis is

carried out in neutral or alkaline conditions; then the lysed cells are

subjected to electrophoresis, DNA staining and microscopic image

analysis.40 Damaged cells appear as a ‘comet’ with a brightly fluor-

escent head and tail, whose length and fluorescence intensity depend

on the number of DNA strand breaks.41 The Comet assay is a rapid and

sensitive method that allows the evaluation of DNA fragmentation on

a few sperm; thus, it can be employed in cases of severe oligozoosper-

mia. The disadvantages of the Comet assay are the lack of standardized

protocols and the need for software to conduct image analysis.42

Recently, some of these methods have been modified in order to

improve their accuracy and reliability, to enhance their potential clin-

ical utility, and to measure other types of DNA damage. The TUNEL/

PI procedure, recently developed in our laboratory, improves the

cytometric detection accuracy of SDF by excluding M540 bodies from

sperm fluorescence analysis.4 Another advantage of TUNEL/PI is its

ability to distinguish between two sperm populations whose percen-

tages of DNA damage show different relationships with semen quality.

In particular, SDF in PIbr population is of interest, as, being unrelated

to semen quality, a DNA-fragmented sperm in this population may

be motile and with an apparent normal morphology.4 TUNEL

after decondensation with dithiothreitol,43 developed in Aitken’s

Laboratory, should better define the status of chromatin damage with

respect to simple TUNEL, because it facilitates greater accessibility of

the sperm nuclei to the terminal deoxynucleotidyl transferase enzyme.

Moreover, coupling this technique to a stain for dead cells 43 allows the

detection of DNA fragmentation in live sperm. In principle, live sperm

should have the greatest impact on reproductive outcomes; conse-

quently, the detection of SDF in live sperm should improve the pre-

dictive power of SDF. However, Aitken et al.44 failed to better

discriminate between fertile and infertile subjects by measuring the

levels of SDF in live vs. total (live1dead) sperm. A modified version of

COMET was proposed by Simon et al.,45 by pretreating sperm samples

with the enzyme formamidopyrimidine DNA glycosylase (FpG),

which converts 8-OHdG into DNA breaks. Hence, the resultant

amount of SDF from the modified COMET assay is the sum of the

native DNA breakage and the occurrence of 8-OHdG, the latter being

the hallmark of oxidative damage to DNA. With this method, the

predictive power of SDF, in terms of ART outcomes, was improved

for both in vitro fertilisation (IVF) and ICSI cycles.

CLINICAL CORRELATES

What can we learn from treatments to reduce SDF?

Only a few clinical studies have been performed using SDF as a prim-

ary or secondary end point after the in vivo treatment of patients with

pharmacological approaches. These studies involved only small num-

bers of recruited patients and employed empirical treatments, such as

antioxidants, with unknown mechanisms of action. In addition, very

few of these studies had a randomized placebo-controlled design. In

general, these studies show that the treatments had only limited effects

on SDF, averaging about 20% reduction of SDF 29,46–48 with the excep-

tion of the study by Greco et al.,27 which demonstrated a 60% reduc-

tion of SDF in men seeking treatment for infertility. Later, Greco’s

group20 demonstrated higher implantation and pregnancy rates by

using ICSI with sperm from men who has been treated with antiox-

idants and responded to the treatment with a decrease in SDF.

However, in this study,20 which was neither randomized nor pla-

cebo-controlled, about 30% of the patients did not respond to the

antioxidant treatment.

Overall, published studies on in vivo treatments aimed at reducing

SDF have shown few beneficial effects. There could be several reasons

for the limited efficacy of oral anti-oxidants, including biases in

patient selection, length of therapy, type of antioxidant (single or

cocktail), effective absorption of the drugs in the reproductive tract

and intra-individual variability of SDF. Concerning the last point, data

on intra-individual variation of TUNEL/flow cytometry and SCSA

results seem to indicate that sperm DNA damage is consistent over

time or at least show that there is less intra-individual variation with

respect to other semen parameters in normozoospermic subjects.49

Recently, reports have shown that the intra-individual variation in

DNA damage detected by SCSA is high when the extent of DNA

damage in the patients is elevated.50

It is clear that larger, multicentre, fully randomized and placebo-

controlled studies are urgently needed in order to define whether it is

possible to reduce SDF by in vivo treatments. Such studies should be

performed in men with high basal SDF levels. In view of the demon-

stration that multiple causes result in SDF in the ejaculate (see above),

additional strategies, based on increasing the efficiency and the quality

of spermatogenesis, should be developed. In a recent Cochrane data-

base systematic review,51 which includes 34 randomized controlled

studies on the effect of antioxidant treatment on pregnancy rate, some

beneficial effects of antioxidant supplementation on pregnancy rate

were suggested, warranting further head-to-head comparison studies.
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Moreover, in the same review,51 the authors concluded that SDF

should be included among the measured outcomes of these studies.

At present, only the study by Greco et al.27 evaluated the SDF para-

meter and met the criteria to be included in a meta-analysis for evalu-

ation of the effect of antioxidants on SDF.51

Another possible use of treatments to reduce SDF is related to sperm

cryopreservation. There are numerous studies demonstrating that

SDF and apoptotic markers increase after cryopreservation, mostly

because of an increase in oxidative stress.31,52–54 Thus, antioxidants

could be added to cryopreservation media, as suggested by studies

showing some efficacy of genistein and resveratrol in reducing post-

thaw SDF.53,54

Finally, several studies have evaluated the relationship between vari-

cocele and SDF, and the effect of varicocele surgical or microsurgical

repair on SDF. Men with varicoceles exhibit higher SDF levels than

fertile men or donors, but these levels are not higher than those of

men with other or unknown (idiopathic) causes of SDF.21,55–57

Varicocelectomy has been associated with a significant decrease in

SDF in all of the studies published to date.58–62 Interestingly, in some

of these studies, SDF was the only seminal parameter to improve after

varicocelectomy.60,61

Relationship to the outcome of natural and assisted reproduction

During the past decade, several authors proposed the assessment of

SDF as a parameter to predict male fertility potential. Because SDF

reflects, but does not precisely overlap with the extent of poor quality

sperm,1–3 its assessment might, indeed, provide additional prognostic

and diagnostic values. In view of the finding that fertilisation may

occur normally even when SDF is present,5,63,64 any sperm DNA

damage that cannot be effectively repaired by the oocyte may affect

the subsequent post-fertilisation steps, such as embryo and foetal

development. Therefore, the assessment of sperm DNA status may

be of particular significance in cases in which fertilisation is normal

but implantation fails or early miscarriage occurs. Indeed, studies

performed in animal models, in which DNA fragmentation has been

induced in spermatozoa by radiation63 or by freeze–thawing without

cryoprotectant,64 have demonstrated extensive damage in both devel-

oping embryos and progeny.

Few studies, mainly employing SCSA to detect SDF, have been

undertaken to evaluate the impact of SDF on fertility in vivo in

humans.65–67 These studies demonstrate a reduced probability of

pregnancy arising from sperm from men with high SDF, with an

overall calculated odds ratio of 7.5% and a 95% confidence interval

of 2.5–22.6.65 Importantly, this appears also to be true of men with

normal semen parameters,67 suggesting that the evaluation of SDF is

of additional value to semen analysis. Similar results have been

obtained for first-level ART (intrauterine insemination),68–71 irre-

spective of the method used for evaluating SDF. In particular, an

extended study by Bungum et al.,69 performed on a total of 998 intrau-

terine insemination cycles, showed significantly lower odds ratios for

clinical pregnancy (CP) and delivery when the male partners had a

DNA fragmentation index of more than 30% as measured by SCSA,

leading the authors to suggest routine measurement of SDF in the

assessment of infertile couples.

However, at this time, data demonstrating that such testing has the

predictive power to inform the clinical management of infertile cou-

ples in a cost-effective manner are lacking, and this approach has not

been supported in professional guidelines.

Published studies report conflicting results on the impact of sperm

DNA integrity on the outcome of IVF or ICSI, in particular on the

effect of sperm DNA integrity on fertilisation rate (FR) and embryo

cleavage. A possible explanation for these differences is the different

methods used to detect DNA integrity in these studies. In addition, the

lack of standardisation of methods used to evaluate SDF is another

factor affecting the results, as differences arise even when the same

method is used. In Table 1, results on the impact of SDF on second-

level ARTs from different studies are divided on the basis of the three

main assays employed to detect SDF: SCSA, TUNEL and COMET. In

particular, the three table panels (SCSA, TUNEL and COMET) show

the impact of SDF on the different end points of the studies with the

three methods. As can be observed, all of the studies performed with

SCSA, which use FR as one of the end points, do not reveal a significant

impact of SDF on it. Conversely, when TUNEL is used (Table 1,

TUNEL panel), the data on the impact of SDF on FR are more variable;

although most studies (8/10) show no significant effect. With the

COMET assay, high levels of SDF had an effect on FR in IVF cycles

but not in ICSI (Table 1). It should be noted that there are few studies

evaluating the impact of SDF on ART using COMET, and all of these

studies are from the same research group (Table 1, COMET panel).

Overall, it appears that the amount of SDF does not correspond closely

to the fertilisation ability of sperm when evaluated by SCSA or

TUNEL, as was also indicated in a recent meta-analysis by Zini

et al.73 This is also in line with recent literature,5 demonstrating that

sperm with fragmented DNA retain the ability to fertilize oocytes. This

issue merits further investigation in light of recent evidence of the

existence of two sperm populations characterized by different (and

opposing) relationships between their DNA fragmentation and semen

quality4 (see above).

Most studies (6/9) using TUNEL report a significant impact of SDF

on embryo cleavage, blastocyst development and CP parameters

(Table 1, TUNEL panel), both with the IVF and ICSI ART techniques.

Conversely, studies performed with SCSA obtained more variable

results; only half of them report a significant effect of SDF on CP

(Table 1, SCSA panel). Furthermore, a meta-analysis of studies that

used TUNEL or SCSA to evaluate the impact of SDF on ART outcomes37

revealed a difference in the correlation of SDF with CP, depending

on the method of evaluation: CP showed a significant relationship

with SDF only in pooled TUNEL studies. Interestingly, the overall

predictive value of SDF on CP as assessed by COMET is signifi-

cant and increases when the COMET assay is performed in con-

junction with FpG treatment (hence including the oxidative DNA

damage), both for IVF and ICSI45 (Table 1, COMET panel).

Several of the studies reported in Table 1 evaluated the impact of

SDF on pregnancy loss (PL). Interestingly, all of the studies using

TUNEL (Table 1, TUNEL panel) report a clear, direct relationship

between PL and the occurrence and extent of SDF. Conversely, among

those studies using SCSA (Table 1, SCSA panel), only the studies by

Lin et al.74 and Kennedy et al.75 report a significant impact of high SDF

on PL. Studies using COMET did not evaluate PL.

It appears that TUNEL is more sensitive as a predictor of PL than

SCSA, as was also revealed in a recent meta-analysis.73 Another study76

demonstrated that there was high DNA damage (aneuploidy and SDF)

in the male partners in couples with a history of recurrent miscarriages,

suggesting a ‘paternal factor’ in early miscarriage.

CONCLUSIONS AND FUTURE DIRECTIONS

As of today, DNA fragmentation is the most frequent DNA alteration

in sperm, and its clinical relevance is now emerging. DNA fragmenta-

tion has an important impact, independent of the parameters of

classic semen analysis, on both natural and assisted reproduction. In
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particular, it is now evident that DNA fragmentation is associated with

alterations in embryo quality, leading to a decreased rate of implanta-

tion or an increased rate of early miscarriage in ART. However, phar-

macological treatments (based on the administration of anti-

oxidants) aimed at decreasing SDF have demonstrate little beneficial

effect, indicating the need for developing additional strategies to

reduce SDF. In this respect, more attention should be paid to define

the type, as well as the origin, of DNA damage in sperm.

In our opinion, there are several points that should be considered

regarding the introduction of SDF into the routine analysis of male

infertility and before the application of ART procedures. Although

solid data from several studies show that there is more SDF in

infertile or subfertile males than fertile males, it is less clear whether

knowledge of this parameter is helpful in providing treatment guid-

ance for infertile couples. As mentioned above, the evaluation of

SDF may be useful in those couples who are eligible for first-level

ART, as the extent of SDF has been found to correlate strongly with

the outcome of intrauterine insemination application. Conversely,

studies on the impact of SDF on the outcome of second-level ART

are inconsistent, leaving doubts about the clinical utility of SDF in

decision-making for couples undergoing these procedures.73,77

Although there are several possible reasons for conflicting results

(including patient selection and age of the female partner), the

technique used to evaluate SDF can significantly affect the sec-

ond-level ART outcome and yield markedly different results

(Table 1). It appears that those methods that directly evaluate the

occurrence of DNA strand breaks (such as TUNEL, COMET and

COMET/FpG) better define the relationship between SDF and ART

outcomes. Not only is standardisation needed for both assays, but

also the definition of threshold values of SDF in fertile men must be

determined. These studies are difficult, and more subjects need to

be enrolled in future studies so that the many confounding factors

can be considered. These factors include age, partner lifestyle,

oocyte quality, the experience of the ART centre and so on.

There are certain categories of patient who may benefit from SDF

evaluation before undergoing ART or attempting to conceive nat-

urally: subjects who have been heavily exposed to toxicants or radio-

chemotherapies, which may lead to persistent SDF;78,79 those affected

by diabetes, who may have increased SDF;80 male partners in couples

who have experienced repetitive, unexplained PL;73 or male partners

in couples who have experienced repeated, unexplained failure of

fertilisation. In addition, it has been shown that cancer patients may

have increased SDF in their semen, even before chemotherapy.78,79

The increased SDF in cancer patients may be a problem for semen

cryopreservation and the eventual utilisation of cryopreserved semen

for ARTs because the deleterious effects of the cryopreservation pro-

cedure may further increase SDF. In these cases, the evaluation of SDF

may be useful to the clinician for counselling the couple.
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